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The method of cluster decomposition, well known in statistical mechanics and recently
applied to ¢® field theory by Chang, Yan, and Yao and by Campbell and Chang, is here ex-
tended to the calculation of the electromagnetic form factor in a renormalizable neutral
pseudoscalar theory. In particular the set of so-called uncrossed “rainbow” diagrams are
analyzed in the limit of spacelike momentum transfer squared, ¢%, much larger than the
pion or proton mass squared, x? or M 2, In this limit the Dirac form factor behaves as
F,(q% =B(g% u¥/m?, M*/m? (—q*/m?)~%€)) where g is the % coupling and m is an arbitrary
scale factor. The functions A and B are shown to arise in momentum space from “volume”
and “surface” effects, respectively. They are given as a power series in g%. The first two
terms in A are calculated explicitly, giving A= (g2/3272) + §(g2/32n%)2+ +--.

I. INTRODUCTION

The only theoretical structure so far developed
which has all the basic principles such as super-
position, analyticity, and so on, is quantum field
theory. A compelling question is what the asymp-
totic behavior of the theory may imply about high-
momentum or short-distance aspects of hadrons.
Since only perturbative solutions exist, one must
analyze infinite series. In most studies one keeps
only the leading asymptotic term in each order of
perturbation theory, while neglecting similar
terms in higher orders. The hope is that nonlead-
ing terms will not affect the qualitative conclusions

The classic example of this approach is the anal-
ysis of “ladder” diagrams in @3 theory with s, the
center-of-mass energy squared, taken asymptot-
ic.! The leading term of an n-rung ladder is pro-
portional to (Ins)"™ and the sum is proportional to
s*® where a represents a Regge trajectory func-
tion for the exchanged ladder. It was known for
some time that inclusion of all nonleading terms,
proportional to (Ins)™, m<n -1, still leads to Reg-
ge behavior with the only modification being in the
trajectory function. Recently Chang, Yan, and
Yao® showed that the nonleading terms are associ-
ated with regions of integration in which adjacent
longitudinal momenta on the sides of the ladder are
comparable. Campbell and Chang® found that these
“correlations” provide a physical mechanism for
producing the Regge behavior via the cluster-
decomposition method of statistical mechanics.
They also applied the technique to production pro-
cesses,* and their conclusions support and extend
the gas model of Feynman and Wilson.5

The intention of this paper is to apply the cluster
method to a certain calculation in a renormalizable
theory. In particular, a set of diagrams for the
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electromagnetic form factor of the proton with neu-
tral pions is chosen. These are called “rainbow”
diagrams and are shown in Fig. 1. The external
protons are on-mass-shell and the photon momen-
tum squared is asymptotic in the spacelike direc-
tion.® That is, —¢%> m? where m is an arbitrary
parameter of the order of the proton or pion mass
squared, M? or p%. The sum of terms leading in
In(-g2%/m?) was one of many results given in an ex-
cellent study by Appelquist and Primack.” They
found for the rainbows in leading order:

2
q° _ﬂ _ _‘Ii ~(g%321%)
exp[_ 3272 ln(— m? )]‘(- m2 ’

where g is the 7% coupling constant. They also
found that the sum of next-to-leading terms is
In(-g%/m?) larger. The present paper verifies
these results, although the sum of next-to-leading
terms is numerically different. Inclusion of all
nonleading terms provides a simple modification
on the leading terms.

The results of this work can be summarized as
follows:

(a) The rainbow diagrams represent a conserved
current, so only the usual Dirac and Pauli form
factors appear. The Dirac form factor F, is ex-
pected to be larger than the Pauli term F, by
O(m?/-q*) and only F, is calculated.

(b) The 3-axis is chosen along the initial proton
momentum. All 4-vectors are written in compo-
nent form as a=(a,, d, a_) where a,=a,+a, and &
is in the 12 plane, transverse to the initial proton.
The minus integrations are performed, fixing the
minus components by mass-shell conditions. The
plus integrations are then finite, but the unrenor-
malized transverse integrals are logarithmically
divergent. However, it is found that the only im-
portant integration regions are those in which the
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magnitudes of the transverse momenta are or-
dered in a certain way. The innermost pion car-
ries the largest transverse momentum.

(c) Each divergent transverse integral requires
a single subtraction involving products of lower-
order amplitudes. It is found that the subtractions
cancel contributions from all integration regions
except those in which the magnitudes of transverse
momenta are in the opposite order to that men-
tioned in (b). Then the outermost pion has the
largest transverse momentum, and all transverse
integrations are bounded by &°.

(d) The integrand, appropriately defined includ-
ing all subtractions, has a factorization property
analogous to that of the integrand of the partition
function in statistical mechanics. Along with the
properties described above, this is sufficient to
show by the cluster -decomposition method that the
Dirac form factor of the rainbow has the form:

Fy(q®)= eXD[ 7: (%{)ic.(qz)] ,

i=1
where

Ci(q®) =a, In(-g%/m?)
+b,(u2/m?, M?/m?) +0m?/(-q?)).

The g2 dependence comes from the “interior re-
gion,” where the transverse pion momenta squared
are much less than §2 and much greater than m?2.
In particular, a; arises when any 7 adjacent pions
have comparable transverse momenta, or are
“correlated.” It is independent of both M? and pZ.
Secondly, b; arises when any 7 adjacent pions have
transverse momenta squared comparable to 42 or
m?, representing a “surface effect” dependent on
the masses.

(e) The leading terms arise from completely in-
dependent integrations, giving

a,=-1

in agreement with Ref. 7. Correlations of any two
pions contributes

- 5
Ay = —%.

Thus the nonleading terms represent correlations
which are indeed important when g is O(1) as in
strong interactions.

The outline of the paper is as follows: Section II
gives the proof that the rainbow current is con-
served and some notation is introduced. In Sec.

III the lowest-order diagrams are examined, and
the transverse dependence and renormalization are
analyzed in detail. Section IV shows how the low-
order results are generalized to the N-pion rain-
bow, with special emphasis on renormalization.
Section V gives the cluster decomposition and proof
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FIG. 1. The general 7’ “rainbow” diagram studied
here. Only the Dirac form factor is extracted.

of exponentiation. Finally the results and possible
extensions are discussed in Sec. VI.

Appendix A shows how the current conservation
comes about in terms of Feynman parameters for
the two-pion case. Appendix B shows how the one-,
two-, and three-pion numerators are calculated in
the formalism of this paper. Appendix C gives the
calculation of a, and a,.

II. KINEMATICS AND NOTATION

As mentioned in the Introduction the set of dia-
grams studied here are the neutral pion “rainbow”
diagrams shown in Fig. 1. The initial proton of 4-
momentum p emits a number of pions, the 7th pion
having 4-momentum w;. It then interacts with the
electromagnetic current, picking up 4-momentum
¢ and reabsorbs the pions in opposite order. The
final proton momentum is p’=p +q.

It is important to note that one does not in gen-
eral expect these diagrams to produce a conserved
current. In other words, the current is generally
conserved only when it is inserted in all possible
ways on a continuous charged line.® This generates
a broader class of diagrams than the rainbows,
and a typical one is shown in Fig. 2. However,
when the external protons are on-shell the symme-
try of the rainbows gives current conservation, as
will now be shown.

A. Rainbow Form Factors

The electromagnetic vertex function, for any val-
ue of p’%, p2, or g2, must transform as a 4-vector
under the Lorentz group and parity. Under these
conditions, one can construct twelve independent
quantities from the available vectors and Dirac
matrices. These can be cast in the following con-
venient form®:
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FIG. 2. A typical diagram one must add to that of
Fig. 1 in order to ensure gauge invariance for any p?,
plz' and qz.
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B+M
2M
-5+M
2M

-B+M
2M

p+M
2M ’

(2.1)
where &, =3F,(p’?, p? q*). Clearly only three terms
contribute when this is sandwiched between posi-
tive- or negative -energy spinors. One can check
that the general rainbow vertex, without the spin-
ors, transforms as the bare vertex under charge
conjugation. In other words,

c-lr\“(pl’ p)C=—l":’(-—p, _p,) . (2~2)

This holds for any diagram which is symmetric
about the current insertion. It implies conditions
on the form factors in Eq. (2.1). The one of inter -
est here is

gs(plz’t)zy qz =—8:3(P2,p’2, qz) (23)

which implies that &, vanishes when p’2=p2. Thus
one has

W p"YT (", P p)
=% p)F (42, +iFo(a9)0,,a"/2m)up) .
(2.4)

P +M
2M

I‘u(‘b', P= (517;1*'7:520';“1 qy""'}aqu)

-$'+M
2M

P +M
2M

-p'+M .
+ —i;-M—(S’myu +1F,,0,,9"+F1,q,)

(Fyyy+iF50,,4" + Feq,)

+

(Fryu+iF50,,9" + Foqy)

Thus the rainbow current is conserved and one
need not include diagrams such as the one shown
in Fig. 2.

The functions F, and F, are the usual Dirac and
Pauli form factors, respectively. It is expected
that F,/F, ~0(m?/(-q?)) since a factor of q is ex-
tracted in the definition of F, and it must be a func-
tion of ¢g2. This can be verified in low orders.
Only F, will be calculated here.

B. Infinite-Momentum Technique

The components of a typical 4-vector a, will be
written as (a,,a, a_) which are related to the usual
components by a, =a,+a, and 2=(a,, a,).’° The in-
variant product takes the form

a-b=%(a,b_+a_b,) -4 b. (2.5)

Firstly, a Lorentz boost along the z axis with ra-
pidity £ causes the change

a—(a,ef,d,a_e”t) (2.6)

which clearly leaves Eq. (2.5) invariant. Secondly,
Lorentz transformations in the transverse plane
form a Euclidean subgroup. Such a transformation
is generally complicated, but if @ and b are placed
on-shell by setting a_=(3%+m,%)/a,, and similarly
for b_, it takes the form

. . (A+a, 8P +m,?
a- a+’a+a+c’——-a_—_
N

(2.7)
and similarly for b, where € is a constant trans-
verse vector.

Finally, the Dirac matrices in this representa-
tion have the following properties:

{re,v-t=4,
{’yi"’;}=0) (2‘8)
y:2=0.

C. Choice of Frame

The particular reference frame chosen here has
its 3 axis defined by the initial proton direction,
and the scale of plus components defined by p,=1.
Furthermore, since ¢? is spacelike the frame de-
scription can be completed by setting g,=0. With
the initial and final protons on-shell this implies

-

p=(1,0, M?),
q=(0,3,q?), (2.9)
p'=(1,4,3*+M?).

In order to determine the form factors in Eq. (2.4)
it is sufficient to calculate a single component of
T',. A convenient choice is found to be p=+. Then
F, can be extracted from #(p’)T", u( p) by multiply -
ing on the left by v,u(p’), on the right by #( p) and
summing over spins. Since p,=1 and ¢,=0 one ob-
tains upon taking the trace

F(g®) =8 Trly (' +MT (p', p)F+M)]. (2.10)

A final notation is to emphasize the different
roles played by the longitudinal and transverse pi-
on momenta. After integration over the minus
components it will be seen that the plus compo-
nents lie between p,=1 and ¢,=0. They represent
the fractional longitudinal momenta as in the “par-
ton model”.!' As a reminder of this the plus com-
ponent of the ¢th pion is called x;, so that

w= (%, Wy, w,) . (2.11)

III. LOW-ORDER CALCULATIONS

In this section the three lowest-order amplitudes are examined explicitly. Integrations over the w,_
components are performed and the properties of the transverse integrations are analyzed. Special atten-
tion is paid to renormalization. The insights obtained here are generalized to all orders in Sec. IV.
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A. One-Pion Diagram

According to Eq. (2.10) the amplitude in this order can be written'?

FO= -ig* fd"w STr(y (B + M)ys(B' —th, + M)y (-, + M)ys(+M)] (3.1)
L (2n) Vw2 -p?+ie)(p-w, P -M2+ic|[(p —w,? —M? +ie] ’ )
where d*w, = 3dx,d*w,dw,_.
Integration Over wy_
In the frame defined in Eq. (2.10) the denominator factors can be expressed as
w 2 2 :
x<w Wit 5)
x, X,
_ 2_, wltM? . e 3.2
(1 xl)(M w,_ 1-x, +ll_x1 s (3.2)

. (-w)2+M? . € ]
- 2 2 _ -— .
(1 xl)[q +M?—w,_ 1-x, Hl—xl

The contour integral of w,_ will vanish if the poles lie on the same side of the real axis. This implies that
sgn(x,) =sgn(l -x,), or

0<x,<1. (3.3)

Under this condition, the contour can be closed in the lower half-plane, picking up the pion pole. Around
the semicircle w,_ =Re* with R-. The proton propagators contribute two factors of Ry, in the numera-
tor, but these are cancelled by the current, since y,%2=0. Thus the integral damps out as 1/R? on the
semicircle, and only the residue at the pole contributes. Then Eq. (3.1) takes the form

—o2
FP= s fdxldzwl%Tr[n(szM)ys(ﬁ'—w1+M)y+(zf—w1+M)y5(z$+M)J

w 2 2 - 2 2 w2 2 = \2 27 )1
_ 2 _ Wy tuT W +M _ >3 2 Wi ti _(Q‘Wl) +M
x{xl(l x1)<M ) 1-x )(l xl)[q +M Py 1-x, , (3.4)

where in the numerator it is understood that w,_ = (w,? +u?)/x,.
The denominator in Eq. (3.4) could have been written down immediately from Weinberg’s infinite-momen-
tum rules.’ It can be rewritten as

x,[<1 +%)§3+(1 -X,)M? +-&u2][(1 +3(—1>\T;;2 +(1 -X,)M? +£u2], (3.5)
1 Xy Xy Xy

where
X, =1-x, w/=w,-x4. (3.6)

X, is the plus component of the proton after the pion is emitted. The symmetry in \TJx and \;{ is a result of
invariance under (2.7), { being the only constant transverse vector available. This symmetry must also
appear in the numerator.

As shown in Appendix A the numerator may be rewritten as

—%Tr{[(x,ﬁ' _wl) —le][(wl —xxﬁ) - le]} .

The combination of 4-vectors appearing in each factor has zero plus component, so their dot product in-
volves only the transverse components. Equation (3.4) then takes the form

2 1 w. ew! 2pr2
F- £ dx, [ azw - Wy Wit M ) (3.7)
to2(2m)? ! w,2 1-x, w2 1-x,
0 xl(-xL-+x1M2+——p2>(—‘+x1M2+—u2)
1 Xy X Xy
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Renormalization

The transverse integral in (3.7) is logarithmically divergent as \;12-» «. The finite part is defined as
usual by subtracting the amplitude with the external lines on-shell, which here means §=0." This is rep-
resented diagrammatically in Fig. 3 and gives

Fo-_& fxdx fd w, Wy Wi +x,°M? _ Wi +x°M
17 a2n) 1% (W2 +x2M2+(1 = x))p?|[W{2+x2M2 +(1 —x,)u?] ~ [W2+x2M%+(1 —x)u2]? ("

(3.8)
One can add and subtract (1 —x,)u? in both numerators and combine terms to give
(D - g* f f X9 W)
Fi 2027y x,dx, | d?w, W2 +x2M%+(1 —xl)ﬂz]\[VV{Z +x2ME+(1 = 2%
%242 +2x4 + W,
1 =2t (W2 +x2M2 +(1 = x)u2]? [W/2 + 2,2 M? +(1 = x,)u?] (3.9)
Letting d®w, ~ d*w simplifies the angular integrations. The second term is O(m?/q?2). Letting y= w
+x,2M? +(1 —x,)u? one obtains after angular integration
! * d S +x:2 42
FP=—2— fxdxlnf CAD S rraq
2(2 9793 1%A12 2 2ar2 - 2 1/2
( ) x] ”2*’(1“"1)“2 y 2 [yz _(legag)y +(x12a2)2(1 +4 M ;(2%2 xl)“ )]
1
+0(m?/q?). (3.10)
In the limit §%> M2, u? this becomes simply
~ (D~ -
P = -7 ) 1@/t v00m®/9). (3.11)
Analysis of W, Integration
In light of the simple result shown in Eq. (3.11) it is natural to rewrite Eq. (3.8) as
- _ g2
FQ= (W)GJ.)
(3.12)

1= -fdxl w 2 g1(q, Wp m) .

where it is understood that x,>0. Here the “renormalized integrand” g, is given in terms of the “unrenor-
malized integrand” f, by'®

gx(a.y ;;’u m) = f,(a, ;1) m) -fl(ay ;1’ m)

e 2p72
=6(1 - x,)w 2 LIS w1+x1M
(1= x)w, {(l/xl)[w1 2422 M2 +(1 - x,)u2][W/% +x,2M? +(1 - x,) %]

‘;12+X12M2 } (3.13)

- (1/x,)[W,% +x,2M? +(1 = x,)u?]?

W
~ N - - - -
- ——— +0|—
q q we

el

FIG. 3. The finite contribution in 0(g?). FIG. 4. Behavior in the region W,2>>g?2.
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TABLE I. Behavior of one-pion integrand in transverse-momentum space.

Transverse region f1@, Wy, m) f1(5,‘7/1,m) g1@,wy,m)
W2 <m? € € €
w2~ m? €4,€9 1 1
gt o> Wy >> m? €, €4 1 1

~q? 1 1 1
W2 G 1 1 €4

This equation is represented in Fig. 3. It can be checked that f, and g, are at most O(1), as expected
from Eq. (3.11).
To take advantage of the fact that §2 >m? one can partition the transverse integration as follows

™ m2 m% €, €392 Q%ey
J‘dzwl ) gg(fﬁ *f L[ f f )duh (3.14)
_r 2 o €m? m%ey €32 e,

where the €; are arbitrarily small positive constants. The order of magnitude of f, and g, in these regions
is given in Table I. [As mentioned in footnote 15, x, ~O(1).] First note that'®

f,~0(1) only when w2 Z (42, m?). (3.15a)

[#,>2 2 is intended to mean W,>>q?2 or W,2~§?, as in the last two integration regions in (3.14).] Secondly,
in the region w,* >{? the integral over f, diverges, but the subtraction cancels the contribution from this
region because

F1@, W,y m)= £,(0, Wy, m)+0(G2/W2). (3.15b)

This property is represented in Fig. 4. These properties of f, imply for g;, as shown in the last column
of Table I, the following properties:

~0(1) only when §%Z w2 Zm?; (3.16a)

when G 2> w,?

gx(a; ;‘71, m)"’ "‘f1(0’ \;1’ m) +O(‘;12/a2)
=g,(0, Wy, m) +0(W2/§?). (3.16b)
Neglecting p.2/M? and letting m2= M? one has

2 (1 "y ey (=Ddw,? 5352( 1)dw,* a%eq ‘_”71 (W.l_xxa) dwy’® 2 /%2
G,= .HJ; xxd’ﬁ'[ﬂ 2d9{.£1uz W2+ 2M? + e, W2 +f€ - W, - %) -1 3.2 +0(M?/3?)

3a? 1
1
=3f xldxln<—ln 1
T Jy €,X

2771

2 ) ot/

=[a,In(§*/M?) +b,]+O(M?/q?), (3.17)

where a,= -1 and b,=0. Note that the final answer is independent of the eII The In(q2/M?) comes when
wl is free to vary from M2/e, to €,42. The constant from the region w,?~ M? cancels with that from w,?
~q? so that b,=0.

The important insight here is that In(q2/M?) comes only from the region §2> Vv,z > m? where g, is inde-
pendent of 42 and m?2. Such regions in which the transverse ordering is disjoint will be called “indepen-
dent” regions of the transverse phase space. It should be emphasized that this association of In(q2/m?2)
with the 1ndependent regmn is a result of the properties in (3.16) and the transverse symmetry. That is,
first, in the reglon w1 ~ M? one has (3.16) so that g,, and the integral, are independent of 2. Second, in
the region w1 ~q the symmetry allows g, to be written as a function of wl/ || and so the integral is again

independent of 2. The symmetry is a general property, and it will be seen that Egs. (3.15).and (3.16) can
also be generalized.
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B. Two-Pion Diagram

The contribution of the two-pion rainbow to F, is

9= (G5 [ atun [ atu, ATl B s mi B =i, MW B =i, =l MYy Bty iy 20
Xys(B=th,+M)ys($+M)]
x{w 2 = p? +ie)w,? —p2 +ie)[(p -w,)? - M2 +ie)|[( B’ —w,)? — M? +ie]
X[(p—w, —w,)? - M2 +ie][(p' —w, —w,)? - M2 +ie]}™. (8.18)

The denominator factors can again be written as in Egs. (3.2) and the contour integrals over w,_ and w,_
performed. Two factors of w,_ and of w,_ are cancelled by the v, in the numerator, so around the semi-
circle both integrals damp out as (1/R?). In order for the poles to be on opposite sides of the real axis
one must require

0<x,<1, 0<x,<1-x,. (3.19)

The denominator again takes the form of Weinberg’s rules. It can be rewritten similarly to Eq. (3.5) to
explicitly display the symmetry. The numerator can be written as a trace involving only transverse com-
ponents as shown in Appendix B. In the notation of Eqs. (3.12), (3.13), and (B7) one finds

F@=[g2/2(21)]? f dx, f dx, f a 2 f 4 82 £, Wy, Wy, m), (3.20)

where x, ,>0,

X,

. - - - - 1-x—- - 1-=-x, —-x - -
oA, Wy, Wy, m)=6(1 = x,)0(1 - x, — x,)W,%w,? %Tr{[()#{ —le)< P X2 %{+WZ’+M)— —l 2;12] [w{_z-»wm]}

w 2

w, s 1=x L\ = l-xp =, 1l-x=>, = =
x{x1<—x—+x1M = [w,—~w!]x, ) 2+ W 2w, W,

1

2 1 2

1 1 - -~ )
2 —_ _— 2 ’
+(x, +2,)M2 +(1 - x, ‘x2)<x1 + Py )p. ][W1,2-W1,z]} » o (3.21)
Wl o= Wy, -%,,0, (3.22)

and the Dirac matrices in the right-hand part of the trace are ordered opposite to the left-hand part, as
in Eq. (B10).

Properties of the Unvenovmalized Integrand

To find the order of magnitude of f, in various integration regions, one can ignore the cross terms since
W, *w,~0(w, ;?) [and x, ,~O(1) as seen in footnote 15]. Thus one finds that f» behaves at most as

~{L+1E1/ 19, +m? /W 214G/ |9, | +W,2/%,2 + m? /W2 ]f
~O0(1) only when w,? 2 w22 (§, m?). (3.23a)
Regions other than those ordered as in (3.23a) will contribute to O(m?/ —qf). N
Secondly, one can verify that (3.21) has the following properties: when w,?> w2
Fo@, Wy, Wyy m) = £, Wy, m)f1(0, Wy, 0) +O(W 2/ W,2); (3.23b)
when w,2>> (§ 2, m?)
Fo@, Wy, Wy, m)= £,(0, Wy, Wy, 0) +0(G %/ W,2) (3.23¢c)
In (3.23b), f, (0 wz, 0) is the integrand for the one-pion loop with p,=1-x, =p’ and §2=0=m? (so that b

=0=p!). By Lorentz invariance [see (2. 6)] the x, integration must be independent of p, when p_=0. Thus

by letting x,~ x,/(1 — x,) one finds that f l(0 W,, 0) becomes the usual one-pion integrand evaluated in this
limit.

Renormalization

The transverse integrals in Eq. (3.20) are logarithmically divergent as wl 22 —=. The finite part of the
w2 integral is defined as usual by subtracting the integrand with the external lines of the w, subintegration
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FIG. 5. The finite contribution in O(g“).
on-shell. In order to keep the limits on the x, integral the same as in (3.19) one lets
p"wl_'(l"xpa:Mz/l_xl)y q2=0' (3.24)

The resulting integrand then has the form: f,(3, \_;'1, ;;12, m) - f,(q, i’rl, m)f1(6, v_;z, m), where f1(6, v?z, m) is the
integrand for the one-pion loop with p,=1-x,=p; and 4®=0. Finally, the finite part of the w, integral is
defined by subtracting at §2=0. This gives a renormalized integrand of the form

8@, Wy, Wy, m)={[ (G, Wy, Wy, m) = £ (G, Wy, mf (0, Wy, m)] =[ £,(0, Wy, Wy, m) = £,(0, W,, m)f (0, W,, m)]}.

(3.25)
This is represented diagrammatically by Fig. 5.

The properties of f, in (3.23b) and (3.23c) can be represented as in Fig. 6 and Fig. 7. Along with the
property of f, in Fig. 4 they imply the following behavior for g,: (i) when w,2>§? the first and third terms
cancel and the second and fourth terms cancel. (ii) When 522 > 5«712 the first and second terms cancel and
the third and fourth terms cancel. Therefore one finds

(4, Wl, W,, m)~0(1) only when §22 w22 w,2 2 m? (3.26a)

and otherwise g,< 1 and gives O(m?/-q?). Comparing this with (3.23a) one sees that the effect of the sub-
tractions is just to reverse the transverse ordering. Just as for the one-pion diagrams the transverse
pion momenta are bounded by m? and q2.
In order to show as in the one-pion case that the In(q2/m?) factors are associated with the 1ndependent
regmns in the transverse phase space one needs properties analogous to (3 16b). When 42> (w 2z w2
m?) only the last two terms in g, can be O(1), so that when G2 > (w,> 2 W,2 2 m?)

&8, W, Woym) ~ g,(0, Wy, W, m) +O(W,2/§2), (3.26b)

where
80, W,, Wy, m) = =£,(0, W,, Wy, m) +£,(0, W,, m)f (0, W,, m) .

S1m11ar1y, when (42 2 w 2)>»> (;’sz Z m?) only the second and fourth terms can be O(1), so that when
@22 w,2)> (w,? 2 m?)

gz(a) 6]" ‘-;2) m) - gl(a’ ;1, 0)g1(6, W2’ m) +O(§22/;12) ’ (3‘26c)

where gl(O wz,m) =- f 1(0 wz, m). This is the first example of a general “factorization” property. Finally,
one has when (423 w 2Z w,2) »>m?

(T, Wy, Wy m) ~ g,(q, Wy, Wy, 0) +O(m2/W,2) . (3.26d)

The W1 and w2 1ntegratlons can be partltmned just as in Eq. (3. 14), and only the followmg reglons will
contr_l_bute xy’hen q:>m?2 (1) (ﬁ2~w ~w22)>>m (11) (g2 ~w2)>> (W2 =m?); (iii) § >>(w ~w2 2xm?); (iv)
(2= w2)>»w,2>»m? (v) §2> w2 >>(W2 =m?); (vi) @ >>(w ~W,2)>m?; and (vii) § >>w2>>w22>>m In re-
gion (i) g, can be wrltten as a funchon of wl/lql and wz/IqI and because of the transverse symmetry the in-
tegral becomes independent of §2. In region (ii) the result in (3.26¢) implies that the w2 integral is explic-
itly independent of 42 and the transverse symmetry allows one to scale out q in the \Trl integral. Because

w
2w - -2 _-d wy 2
- = 2 -~ -
PN i AN <W| PN AESaN I
ke E J T W

FIG. 6. Behavior in the region W, > W, FIG: 7. Behavior in the region ;%> 2.
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of (3.26b) region (iii) is explicitly independent of §2. Therefore only the last four regions contribute any
q? dependence.

Leading and Next-to-Leading Terms

For simplicity one neglects u2/M? and lets m2= M2. Letting F,=(g?/3272)?G, as in Eq. (3.12), region
(iv) makes the following contribution to G,:

> 2
1-x do (1% dw 2 [ W, - (wl—xlq) ][ -mxixe (B dw,? ] 2 /=2
dx‘ x"’f_ 2 ) =2 -w;__ (W, —x,9) -1 (1=x,)2 Juzer W2 +O(M?/§?)
™ €q 1 1% Y e

_4f dxlfl-x dx, (1x1:§:)2[ ( )m( 3)]+O(l)

(3.27)

Note that the coefficient of In(g2/M?) is the same as appeared in this region of w, in the one-pion case [see
Eq. (3.17)]. The dependence on the ¢, and €/ will cancel, and this will be shown here for the leading and
next-to-leading terms.

The contribution from regions (v), (vi), and (vii), where §q?2 >>w > M2,

- 2 -2
2% ! =¥ 9% dw 2 xix, ureg d2w, SV d2w,
7)7) 4% dx, 2. w2 (1-x)° 2 X2 Voo Juze W2
m 0 o MY ey 1 1 €M ";,22*_ 2 M2 M ey 2

1-x,
x wi(w e 22w,
w, 7€ g2 2 2 1 N
_f iz dwifz [ % 4 xz(l x) -1 +O(M2/q2)-
€W 2 > 2 2) =
3 "1 I:W2 t{ow 2w1 wz+—————-(1 %) wl]z
(3.28)

The first w2 integral is explicitly 1ndependent of w1 . The last one can be written as a function of Vv,
= wz/ | W1| and 1s then also mdependent of w. Thus the leading term can come only from the second term,

in which §%> w,?> w,2> m2. So each factor of In(§2/m?) is indeed associated with an independent region
in the transverse phase space

The only nontrivial integral in (3.28) is the one fror: the reglon Wl ~w2 The angular integration of the
first term in curly braces leaves the following integration over ¥,2 = w, 2/w w2

- 2 - - 3
e ;24+[(1 xz) _g = xz)]vza +<1 :a) %z
ﬂf 4d1)22 X1 %11 = x,) \ X% 1-x

! - 1-x N %1 - %) P72
€ 4 X2 2 _ X2 2 2 X2
{Vz +2 1"‘1( *1 2 1'x1>vz +[x1(1_x1)]

The second two terms in the denominator can be added and subtracted in the numerator to give

1/¢{ X 1-x x (1= x,) 7272
2 -4 2 2 _ 2 -2 X2 X2
nfes' dv, {vz +2 1-—x1< Py 2 l_xl)v2 +[_x1(1—x1)]

1-x, X3 1-x, % \eo [1=-%\ % [l-x X2
-4 - V,2 + -
AN 1-x, X1 1-x, X 1-x\ x 1-x

G449 % (1-% x(1 - %) |
{vz +2 l-xl( % -2 1 - X, )vz +[x1(1 -x,)

The dependence on x, and x, considerably simplifies after the ¥, integration. The sum of (3.27) and (3.28)
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then becomes
- 2 2 o2
1% N\ (N, (°F 2 1 w_,)
G,= 4f dxlf zm ln<M2)1n< < + Ve, le In g xz = | +1n €€, Me
2\1-x,
-In 1 -[(1 =) - %) -2] +1n| - I +0(1).
E) 1-%-% X%, €4
tx, (1-x)
(3.29)

Let x,—~ xz/ (1 - x,) and note that €,, €;, and € cancel. Integration of the ln(wlz/M %) term gives
1/21[In(e,q2/M? )]2 and the €4 dependence cancels [to O(In(q 2/M?))] with that of the first term in Eq. (3.29).
Finally, the lnx,? from §2=w,? (first term) cancels with the Inx,? from w,2 ~m? (second term). This is the
same cancellation which occurred in (3.17). The In(q2/M?) term thus comes only from Wl ~W2 , and one
obtains

=2 2
G,= 21' (a mnL p> +b) (azln > +b, >+O(m2/ﬁz), (3.30)

where a, and b, appear in Eq. (3.17), a,= -3 and b,~0(1).""

Since the leading terms are known to exponentiate, G, can always be written in the form of Eq. (3.30).
The significant thing, however, is the way in which these terms arise. The generalization of Egs. (3.26)
and (3.30) to the next order in g2 provides a nontrivial indication that nonleading terms will also exponen-
tiate.

C. The Three-Pion Diagram

Performing the minus integrations one finds as usual that only the poles at w,_ =(w,2 +u?)/x, contribute,
with the conditions

0<x,<1, 0<x<1l-x,, 0<x<1l-x -x%,. (3.31)

One can define f, analogously to Eq. (3.21), with a denominator given by Weinberg’s rules and the numer-
ator written as in Appendix B [Eq. (B.12)]. The following properties can then be explicitly shown:

fs~O0(1) only when w2 w22 w? = (42, m?); (3.32a)
when w,?> w,2

Fo@, Wy, Wy Wy m) = [5G, Wy, Wy, 0VF (0, W, 0) +0(W,2/ W), (3.32b)
when w,2> w,?

Fo@, Wy, Wy Way )= £ (@, W, m)f5(0, Wa, W, 0) +0(W2/ W), (3.32¢)
when w,2> (4?2, m?)

Fo@, Wy, Way Way 1)~ fo(0, Wy, Wy, Wy, 0) +O(G2/W,2) . (3.32d)

As mentioned in connection with (3.23b), integration over the functions with 42%2=0=m? is independent of

the p, of the external proton. In (3.32b) f,(0, w,, 0) corresponds to an external p,=1-x,; and in (3.32c)
fz(ﬁ, @, G’ra, 0) to p,=1-x, —x,. These factorization properties are represented in Figs. 8, 9, and 10.

Each of the transverse integrals has a logarithmic ultraviolet divergence. In order to keep the limits on
the x; the same as in (3.31) the w, and w, subtractions are performed at the points

~ =L VW2

b w - w _————
- 3 - ZII2~ =2 o7 3 L= ~ -
////'\\/2/\ 4 /( Sl NN +O< 2 > Y '*‘7{(\\ R PR N +O<W? >

FIG. 8. Behavior in the region W;? >>W,?. FIG. 9. Behavior in the region W,% > W,2.
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! b ) (3.33) =72 PEERN
-W, =Wy~ =X =% U, 7T |» . -7 3 //,/"‘\\\\ -2
p 1 2 ( 1 2 1-x,-x, ;0TI N\ PN +O< )
fa ] ik
- M2
p_w"'(l—x" 0’1-::1)’ (3.34) FIG. 10. Behavior in the region w; > §°.

respectively. The renormalized three-pion integrand is then given by

gs(&; -v;p ‘;2) ‘—’;3’ m) E{[fs(ay \-‘.’p ‘;2, "-;:p m) _fz(a; ;‘71, ;72, m)fx(os ‘-;’3) m)]
—f & Wy, M £,(0, Wy, Wa, m) =110, Wy, m)f (0, Wy, m)]}-{3=0}. (3.35)
To see that the appropriate cancellations occur in Eq. (3.35) to reverse the ordering given in (3.32a) one

must understand how to group the terms appropriately. For example, when ;.\'732 > W; the first and second
pairs of terms are each <1.

Diagrammatically, g, is a sum of three-pion diagrams with any number (up to three) of concentric boxes
drawn around any loop. Each box in a given term has a factor of (-1) associated with it. A term can only
be O(1) if transverse momenta not separated by a box are ordered as in (3.32a).

If any of the inequalities in (3.32a) hold, one can group terms as follows: Each term in which the mo-
menta on either side of the inequality are not separated by a box cancels with the term which is identical
except for an additional box between pions of unequal momenta. Thus one finds

g,~0(1) only when §2% w,*2 w2 2 w22 m?2. (3.36a)

Furthermore, if any of the inequalities in (3.36a) holds, only terms in which the unequal momenta are
separated by a box can be O(1). Thus one has when §Z>w?

&(d, Wy, Wy, Wy, m) = g5(0, Wy, W,, Wy, m) +O(W 2/ T3), (3.36b)
when W 2> w,?

8@, W, Wy, Wa, m) - £,(d, Wy, 0)8,(0, Wy, Wy, m) +O(W;2/ W,?), (3.36¢)
when W, > w2

gs(ay av ;2; ‘;3; m)" gz(ay ;{,17 ‘7’27 0)g1(09 ‘_’;3; m) +O(;32/ ‘;22) ) (3-36d)

when w2 >>m?
&(d, Wy, Wy, Wy, m)~ gy(d, W,, W, Wy, 0) +0(m?/ W,2) . (3.36e)

As a result of the properties in (3.36) and the transverse symmetry, each factor of In(q2/m?) in the in-
tegration over g, will be associated with an independent region in the transverse phase space. That is,
the leading term will come when all the inequalities in (3.36a) hold. The next-to-leading term comes when
any two are approximately equal, and so on. One can show that

G,= 3—1![“1 In(q?/m?) +b,]° +[a, In(?/m?) + b, |[a, In(q 2 /m?) + b,] +[a, In(§ 2/m?) + b,] +O(m?/§?), (3.37)

where a, and b, appear in Eq. (3.17) and a, and b, appear in Eq. (3.30). This result is strong indication
that not only leading but also nonleading terms will exponentiate. The next section shows that properties
(3.36) can be generalized to all orders and the succeeding section gives the proof of exponentiation.

IV. THE GENERAL RESULT

In this section the properties found in low orders for the unrenormalized integrand are generalized.
Furthermore, it is shown that these imply similar properties for the renormalized integrand.

A. The Unrenormalized Integrand

Each w;_ integration can be done by contour methods. The contribution on the semicircle damps out.
The contours can be closed in the lower half-plane, picking up the pole at w;_=(w,? +u?)/x;. In order that
the poles are not on the same side of the real axis one must require
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0<x,<X;,, (4.1)
where X;_, is the + component carried by the proton when it emits the ith pion. It is given by

Xiq=1l-x =% =0 =X, (4.2)
After the y,’s are eliminated in the numerator, one obtains the result

2 -
F(IN)E(SZ 2) iI‘[ dxf—_PfN(q,wl,...,wN, m), (4.3)
=1
where it is understood that x;>0. The unrenormalized integrand has the form
- = - - R, Wyy - o . , Wy, M)
= eee 2., 2 L 2 N . 4.4
fﬂ(qy wp ey WN} m) O(Xl) G(XN)wl WN [ N((i, Wp e, wN’ m) ( )

The function D, in Eq. (4.4) is given by Weinberg’s rules.!® A typical denominator factor associated
with an (x,+x,)-ordered state after the current insertion is

Groa [E L Bt Geooatet ]
X X X,

This can be rewritten in the form

1 X P'e =, . .
'Z[(“x:)“’;“'" (“—L) SR SRS s et

! =k n

where w, wj —x, q, j=1, ,i. States before the current give the same form with q=0. Thus including
the factors x; X,?

N
D,,:H{x,[(lhi&);’va <1+-——>w, +E 2w, W, +(1 - X,)M? +Xi<——1—+ -w%)uz]
1

i=1 *i =k i
X[w;-wj, j=1,... ,i]}. (4.5)

Removing the y,;’s from 3, gives an over-all factor of (-1)¥ which has been included in the first factor
of Eq. (4.3). Then one has

m)(:é'Tr{Y-t—(#l'f'M)(t‘I_w],-M)“'(ﬁ’_w1—"'—wNiM)7+(1‘_‘61 _"'_¢N1M).”(ﬁ—¢1—M)(ﬁ“"M)}’

(4.6)
where the w,_ integrations have set w;?=pu?. Because of the invariance under (2.8), 9, must be symmetric
+ i N
under w — w{ just as Dy is.

Although each propagator factor in Eq. (4.6) has terms of the form [(wi +12)/x;]y, one can show that each
contributes only linearly in Iw | and w.'® This is essentially because y,2=0. One can then demonstrate that

fx~O(1) only when w2 23,,,_12 Zoee 2312 = (q?, m? (4.7
and if w2> w,2(j>3), fy~O(W2/W?)
It is easy to check explicitly that as any x; - 0 one has f, ~x;. This is to be expected, since pseudosca—

lar theory is not infrared divergent. Thus x; ~O(1). It can then be seen from Eq. (4.5) that when w,,?
> w‘

DN(E: Wp Teey WN, m)-’D¢(a, ;17 cecy ‘—;h m)-DN-i(By ‘—’;iﬂ, L 7;1\1) 0)"'0(‘;12/‘;1“2)’ (4-8)
where D,_; is the denominator with the external p,=X;.

In the region specified by (4.7) and (4.8) the large variables appear in X, only in the inner N - factors

on either s_jde of Ya- One can show that the product of these factors behaves as N,_;v, in this region,’® so
that when w,, %> w?

mN(ay Wy eeo s Wy, m)*“‘;(ﬁ, ap sevy Giy mmn-i(a’ ‘;“p sy ;A;N) 0) +O(;12/ G{+12) ’ (49)

where o _; is the numerator with the external p,=X,. Combining Eqs. (4.8) and (4.9) one has when Wi
> wi

fh'(q’ ;1’ A ] ;JNa m)"'fi(a)'{;’v M ] ‘_‘;i; m)fN-l(aa ;Hv cey ;{Ny 0) +O(;712/‘-;1+12) ’ (410)
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where f,_; is the integrand with p,=X;. Since it also has p_=0 in this region, the integral of it must be
independent of p, by Lorentz invariance.

B. Renormalization

It will now be seen that the properties of f in Eqgs. (4.7) and (4.10) are sufficient to show that: (i) sub-
tractions just reverse the ordering; and (ii) when any inequalities hold in the new ordering the integrand
factorizes.

Each of the transverse integrals in Eq. (4.3) is logarithmically divergent. One defines the finite part of
the w y integral by subtracting the integrand with the momenta flowing into the w y-loop on-shell. Ihe re-
sulting integrand is then subtracted with the external lines of the w_,-loop on-shell to define the w,_, in-
tegral, and so on. The result is

. g? d?w -~
F(l”’)E(32 2) I dx,f X L el @, Wy ooy Wy, M), (4.11)
i=1
where the renormalized integrand can be written as
N > —
gy(ﬁ, Wi eooy, Wy, m)= E fn-k(ﬁ, Wiy eee s Wyop M) 0, Wahsrs + o+ s Wy, M), (4.12)
k=
with £,=1 and °
a0, Wapars - -+ » Wy M) = {z; (=1)° £, 0, Wyogass - o s 1) ==+ £ (0, oo, Wy, m)]. (4.13)

The set of integers {n,} is defined by requiring Y5 i=im; = k. In order to keep the x; limits as in (4.1) the
protons are placed on-shell by

P"wl‘""w("(X4;6>M2/X.-)- (4.14)

Diagrammatically, the above equations can be represented by the sum of N-pion rainbows with all pos-
sible combinations of boxes drawn around the loops, and a factor of (-1) associated with each box. A typ-
ical term is shown in Fig. 11. The n; of Eq. (4.13) is the number of pions in the ith box, and s is the num-
ber of boxes in each term.

Note that each subtraction doubles the number of terms. Consider two adjacent loops labelled i and i +1
and divide the terms of gy exactly in half as follows: The first set contains all diagrams in which loops i
and 7 +1 are not separated by a box. The second set can be obtained from the first by simply drawing an
additional box between loops Z and 7 +1 in each term. Each term can only be O(1) in the regions shown in
(4.7). When w,,>> w,? one has (4.10), so that each term | in the first set will cancel with its associated
term in the second set. This is true for any ¢ including wo 4. Thus one has

gx~O(1) only when G22 W22 ---% w22 m?;
when W2>w?2, j>i then gy~O(W.?/W?). (4.15)

Regions other than those in (4.15) thus contribute O(m?*/q?).

Secondly, when wi > w‘ﬂ all the terms in the first set above are O(W‘ﬂ /W w,?). Summing up all terms
with a box between loops 7 and ¢ +1, one finds that when w, > w,,,, ,

gﬂ(q: wp ey WN, m)" gg(‘l; Wp LA | W‘, O)gN-i(O) wlﬂ’ ey WN, m) +O(;i+;2/‘;iz)y (4'16)
where
&n-1(0, ‘;up ey ;m m) Ehn-i(ay ‘7’“1: ceey ;m m). (4.17)

The following points should be emphasized here:
(1) It is essential that the integral over the sec-

ond factor in (4.10) be independent of any variables M N

in the first factor, including the x,, in order for it e R, Nk
to cancel the appropriate term in Eq. (4.12). In the 27T \\/ N
present notation, this occurs because when w,, / // Rial ISEAN N AN
> W,? the only dependence on any x,.,,, in f,; ap- A A il =~ T B AN
pears in p,=X,, which can be scaled out because ——

p-=0. With the on-shell condition written as in ;“

(4.14) the cancellation can be seen without rescal -

ing.

FIG. 11. Typical subtraction term.
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(2) Note that one must consider @/ of the subtraction terms in order to see that g, has the simple prop-
erties. The particular terms which cancel to give (4.15) and the particular terms which combine to give
(4.16) depend on which transverse pion momenta are in widely separated regions.

(3) The pions are emitted like bremmstrahlung and then reabsorbed. One might expect that as the pro-
ton “slows down” the succeeding pions emitted will have smaller longitudinal and transverse momenta.
This physical ordering for the x, is provided by the w,_ integrations and for the \_{',. by the renormalization.

(4) It is important that the N-pion integrand factors into functions which are exactly the 7-pion and
(N —i)-pion integrands, evaluated in the appropriate regions. This fact allows one to interpret the
In(§ 2/m?) terms in F{" physically and gives a simple result for F,, as shown in the next section.

V. CLUSTER EXPANSION FOR RAINBOWS

In this section it is shown that the properties of the integrand in this model of the Dirac form factor allow
one to apply the cluster-decomposition method of statistical mechanics. This provides a physical interpre-
tation of the g? dependence and a mechanism for exponentiation of F,.

A. Cluster Functions and Sum Over N

The finite contribution of the N-loop rainbow diagram to F, is defined as in Eq. (4.11):
2 N
=M= (&
Fy (321,2) Cu>
G H f f = 2 gN(q) Wiseoo :Wn,m);

where gy is defined in Eq. (4.12). The cluster decomposition is more conveniently carried out after sym-
metrization over all pairs of x;, w;. So one defines the symmetrized functions as follows:

(5.1)

g;r(as §1’ oo yanym) = E)gN(.(LWu oo y‘;tlrm) »
5.2)
2dx; w; - (
GS—H_[ f "2 gN(Qrwu -’WN;m)-
Here P(N) means all permutations of the N indices. The integral of each term must give the same result,
so that
Gy =N!Gy. (5.3)
The properties of 8y 1mp1y the following properties for gy: (i) Property (4.15) implies that g3 ~O(1) only
when G2 2 (W2,...,w2) 2 m% (i) Let {w,} be any set of i transverse pion momenta, and {Wy_;} the remain-

ing ones. Then property (4 16) implies that when all momenta in the first set are much larger than those
in the second, then one has

g;(ay Wiyeoo ,Wmm)"}%)) P(Z)ngn(ﬁ, Wiyeoo ’Wﬂ’m) +O(§N_‘2/r“>,i2)
N =

~gi@{w},00g5-,0,{Wy_.},m)+0Gw,_2/w>), (5.4)

where each factor is evaluated in the appropriate region, and Vviz is a minimum in the first set and Wﬂ_iz a
maximum in the second.

One can now do a cluster expansion of the g§ in exact analogy to the standard statistical mechanics treat-
ment of the partltlon 1ntegrand % The derivation is given here for completeness. One defines the cluster
functions cN(q,wl, . ,wN,m) through the following set of equations:

g1 (q: Wy, m) =01(Q: wy,m),
g3, Wy, Wa,m) =C1(a; Wi, m)cl(ﬁ, Wy, m) +C3(d, Wy, Wa,m) ,
g; (a: Wy, Wy, Wy, m) = 01(6: Wy, m)cl(q, Wz, m)cl(ai WS’m)
- = - > - R .
+¢,(8, Wy, m)cy (@, Wy, Wy, m) + €, (8, Wy, m)cy(q, Wy, Wy, m) (5.5)

- T Y - > -
+¢,(@, Wy, m)cy (@, Wy, Wy, m) + c5(8, Wy, W, W, m),
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where the Nth equation defines ¢y and is of the form

gi(ﬁ,‘;u--.,%,m)={Z}}E{[cl(ﬁ, ym)c )@ ,m)le,@, , ,m)e @ , ,m)ecley@ ,...,m)l},
m; P
(5.6)

where the first square brackets enclose m, factors, the second m, factors,..., and the last m, factors.
Here the m; are integers >0 and are summed over all sets {m;} in which

N
2,im;=N. (5.7
i=1
The second sum in Eq. (5.6) is over all distinct ways of filling the blanks with the w,.
The above equations can be solved successively for the c; to yield

(@ Wy, m) =g$ @, W,,m),
¢3(@, Wy, Wy m) = g5 @, Wy, Waym) - g5 (@, Wy, m)g§ @, Waym),
AGH &1, W2: ‘-‘.’3, m)=g3(q, 61: ;’z, ‘7’3; m)-g3(q, W1: sz m)g$ (@, W:;: m) (5.8)
-3 @, Wy, Wy, m)g 5 @ Wa, m) = &3 (§, Wap Wa, m)g (@, Wy, m)
+2g3 (G, W;,m)g$ @, Wa, m)g§ @, We,m),
The property (5.4) implies that when any two arguments of cy are in the region w,2>>w,? then ¢, ~O0(W,?/ W,?).
As is well known in statistical mechanics this implies that integration over ¢, can only give one factor of

the “volume » from integration over the “center of grav1ty ” The “volume” element here is d(lnw‘z) and
when any w{ > w, the integral is damped as exp(~- lnw, %), Thus the “integrated cluster function” behaves as

2dx, -
Hf_tf -—z cn(q:wu --,w)nm)

= ay In(@*/m?) + by +0(m*/ 5. (5.9)
It will be seen in the next subsection that ay comes from the “interior region” §2> (w,?,...,w,?)>m? and
is independent of the masses.

When Eq. (5.6) is integrated over all the x; and w,; each term in the 37, contributes equally. For a given
i one can permute the factors of c; or the arguments of a given ¢, without obtaining a distinct term. The
number of terms with this symmetry is well known to be

N!
myles myl (L)1 (N)™F

Thus one obtains

2dx, d3w
= E 11 X i
GN }[N i= lm‘!(l')mif T W (Ci ci)]
my

=N!{§‘ ’ﬂl(mi"c,mi). (5.10)

Combining Egs. (5.1) and (5.3) and using the restriction (5.7) one has

o S D

{’"{}

The Born term contributes F{% =1, Summing over all N with the restriction (5.7) is equivalent to sum-
ming each m; independently. Thus the rainbow form factor has the form

Fl("2)=,.11{,,.z“o m, ! [(3217 )C‘(az)]m}

- exp [i H(é—;yci(aé)] . (5.12)
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The physical meaning of the derivation of Eq. (5.12) is as follows: The amplitude of a particular diagram
is analogous to the partition function of a canonical ensemble of pions in a transverse momentum space of
volume equal to In(q?/m2). Equation (5.4) can be interpreted as saying that the interaction has a “finite
range.” The ensemble can therefore be analyzed in terms of all possible ways in which the pions can clus-
ter together, with no interaction between the clusters. This “cluster decomposition” is restricted by the
number of particles available. However, in the sum over all orders, analogous to a grand canonical en-
semble, one has any number of clusters of a given type. The “grand partition function” thus breaks into a
product of functions for the noninteracting clusters, which is Eq. (5.12).

The amplitude of a particular diagram given in Eq. (5.10) is rather complicated and can be misleading.
For example, if one sums up the “next-to-leading” terms from each diagram, one obtains

g%V E_ i ay(e%/3212)
[az<321f2> ln<m2> <m2> ’ (5.13)

where @, and a, are defined by Eq. (5.9). This is larger than the “leading” terms by a factor of In(q?/m?).?
“Interior Region”

In order to better understand Eq. (5.9), consider the various contributing regions of integration. Since
@2 > m? and ¢y~ 0 unless the pion momenta are clustered together in momentum space, only the following
regions contribute:

@) § > (7~ -~ ~

(b) ¢ q ~(W 2R ~wN2)>>m2

(c) q >>(w 2 RWE) > m2
The contribution of region (a) is explicitly independent of g%. In region (b) one can write W, = | q|(W;/| q|) and

=|q|[(W/]q]) = x;q] where ¢ is a unit vector. It is then found that all the ¢ dependence cancels out.??
The g2 dependence can therefore come only from region (c) which is called the “interior region.”

In the interior region any particular transverse pion momentum, say w;%, is integrated from (1/€)m? to

€'q®. Any other W2 may for example be integrated from ¢,_,W,_,2 to (1/€_,)%,_,% (where €, €, &,, €, <1 and

—_

W,2= Wy?in ¢). The Cy in this region are thus eventually determined by integrals of the form

wNz/e;l dw{" wlz/gl’ dw22 Wi-22/€£_2 dwi—12 €92 dw.-2
[ % e S LT, 5
Wy 1 €W 2 € _aWi_p i-1 mé/e i
=2, ,
S e w6
-2 w2 : wZ &N 130+ 05 Wy, U)y
€;W; i+l EN_1WN_1 N

(5.14)

where g, takes the form of 4, given in Eq (4 13) and is independent of E Note that in this form one
must integrate in the following order: W;_ - , Wi-oty o ooy W12 Wy2, ..., Wiy, W;2. However the result of the
first N -1 integrations is independent of w;? To see this, let "’r w,/ [ Wy I, so that

{‘71!=6k(,.‘7lz—1, e W;ﬂ')l‘—il

With this substitution in Eq. (5.14) the integrand and the limits become independent of W;2. Also, only the
N -1 relative angles appear, so one angular integration can be done trivially in the interior. Now ¢y in-
volves various permutations of the g,. One can always scale out \'av’l say, although it will appear in a dif-
ferent position in each term. The W, integration then gives just [71n(e€’q?/m2)]. The dependence on € and

€' will cancel when regions (a) and (b) are included. The remaining coefficient in C,(d 2) should be indepen-
dent of the ¢; and € and has the form

2dx; 2dx d?vy . -
av=NT f o f Nf "NZNCN(O Voo e ey Yy, 0), (5.15)

where Cy is ¢, rewritten in terms of the V.

Note that a, is independent of both M? and ¢?. Physically one might expect correlations of pions to de-
pend on (2. In the ¢® ladder diagrams contributions from longitudinal correlations depend on the mass of
the “internal” particles.® In the present case the pion mass appears as a shift of origin, i.e., in the form
Ww;2+ 1%, and the transverse pion correlations do not depend on it. The constants a, and a, are calculated
from Eq. (5.15) in Appendlx B. They agree with the results of Sec. III. The constant term b, appearing in
Eq. (5.9) comes from the “surface” regions (a) and (b), and contains all the mass dependence




VI. CONCLUSIONS

Based on the cluster expansion in neutral pseudo-
scalar field theory, one can conclude that the
Dirac form factor of the proton for rainbow dia-
grams has the structure?

F,(¢%)= B(gz, & M-i)(_lﬂz)-A(‘z) s (6.1)

m?’ m? )\ m

where g is the 7% coupling constant, p and M are
the pion and proton mass, respectively, and m is
an arbitrary scale factor. The functions A and B
represent volume and surface effects, respective-
ly, in a transverse momentum space of volume
equal to In(—g%/m?). They have the form

A=Y () (-a,

2 M2 hoid 2 M2
B(gza —::TLE, 7_”'2'> = exp[z <-:§_f)bN<%; ;;5')]-

n=1

In particular, a,=-1, b,=0, and a, = -3.

According to experiments on electron-proton
scattering, one should expect that 4 will be posi-
tive. If any of the a, are positive in this model
the sign of A may depend on the value of ¢2 and
£%. However one is not led to expect this from
the first two terms.

The following points should be emphasized re-
garding this calculation:

(1) It is particularly interesting that renormali-
zation does not destroy the crucial factorization
property. This indicates that the concept of clus-
ter expansion may be useful for analyzing other
processes involving spin. Its potential phenomeno-
logical usefulness for relating exclusive and inclu-
sive production of spinless particles has recently
been pointed out.?* The basic ideas may also be
valid for production of particles with spin.

(2) The rapid damping of the elastic form factor
for large —¢? is due to the increased probability
that the pions will be emitted as bremmstrahlung.
A previously studied model for the inelastic pro-
cess,? similar in structure to the elastic one
analyzed here, is shown in Fig. 12. When just
the bare vertex is included the inelastic form fac-
tor W, in the deep-inelastic region factors in lead-
ing order into a part associated with the “outer
rainbow” and one associated with the “inner rain-
bow.” The outer rainbow depends on the fraction
of longitudinal momentum on the proton immedi-
ately before the current insertion. If one does a
Mellin transform on this parameter the outer rain-
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FIG. 12. A related model of the inelastic process.
The rainbow form factor is generally not gauge invari-
ant when p’ 2= p2.

bow factor is

&? In(=¢*/m?)
e"p[mnz S I (6.3)
where X is a “longitudinal impact parameter.” The
inner rainbow factor is simply

exp [% ln<:::>] . (6.4)

The cluster expansion may provide a mechanism
for inclusion of the nonleading terms. Secondly,
comparison with the form factor result suggests
that an appropriate vertex function in Fig. 12 may
help restore scaling to vW,. However, one would
have to deal with the problem of gauge invariance.

(3) It is important to realize that the sum of
leading terms can only suggest the general form
of an amplitude. It is not by itself significant ex-
cept in the weak coupling limit, as one can see
from the first two terms in Eq. (6.2).

Grouping terms of the same order in g2 and the
same power in In(-¢2/m?) can be extremely mis-
leading, as the sum of “next-to-leading” terms
indicates. {See (5.13).] One must first identify the
physical mechanism for the sum of leading terms,
and include the nonleading terms as a modification
on this fundamental unit. In the present model
this mechanism is the association of In(q?/m?)
with independent regions in the transverse phase
space. In general all possible correlations are
important. This strongly suggests that a nonper-
turbative approach is essential to a quantitative
understanding of high-energy processes involving
strong interactions.
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APPENDIX A
This appendix examines the two-pion on-shell rainbow, showing how a symmetry in Feynman parame-
ters gives a conserved current. The argument is a straightforward generalization of the one-pion case.
In the notation of Fig. 1 the denominator factors can be combined as usual to give
Dz ={a1[(P"w1)2 —MZ] +az[(pl —wl)z _MQ] +a3(w12 - “'2)
+a[(p=w,—w, P =M+ a (P —w, —w,? —M?] +ag(w,? — u?)}®
={(1-agwlP+(a,+as+ags)w,?+(a,+ag)2w, w,
=2, - [(a,+a)p+(ay+ag)p]— 2w, [a,p+agp] - (@ +agu?}®. (A1)
The appropriate translation to cancel the cross terms is of the form
wy,=wi+ap+a’p’, wy,=wj+bp+db’p’, (A2)
where
a=(detA) [a,(a,+ay)+aga, +a,),
a’=(detA) o, (a + o) +agla, +a,)l, (A3)
b =(detA) [~(a, +a o +ag)+(1-aga,l,
b’ =(detA)[~(a, +as)a+a;)+ (1 -aga,l],
and
A=<1-oz6 a +ag ) (Ad)
Qu+0g Qu+0g+0g
In the primed variables one finds
D ={(1-agdw?+(a,+as+agdw?—p-plla,+a,)a’+ (a+agda+ab’ +ab]
-MHa, +a,)a+(a,+ag)a’ +ab+ab’] - (a,+ag)u?}e. (A5)
It is easy to check that this is invariant under the permutation ® = (a,)(a¢)(@,@;)(@,a,) in which one inter-
changes a, and a,, and o, and a,. (Note that this interchanges a, a’ and b, b’.) Since the a-space inte-
gration is completely symmetric only the part of the numerator invariant under @ contributes. Thus one
can make the following replacement in the numerator:
Ny(a’,a;b", )~ 3{Ny(a’, a3 b',b) + Ny(a, a’; b, b")]. (46)

Terms linear in w, or w, integrate to zero. So do the antisymmetric parts of wj, w;, and w;,Wsy,, so that
one can also make the following replacements in the numerator:

’ ’ 1 ”2 ’ ’ 1 2
WipWi=a€uWy", WayWyy—~ 18uWsy" . (AT)

In the original variables the numerator can be written

ﬁ(p’)[(zujl 'p _wlz)(zwl .p' _w12)y" - (zwl 'p -wlz)wﬂﬁgn - (2101 'P' —w12)7u 562161 +¢1¢27u ¢2¢1]u(p) . (AS)

The first term is clearly conserved. If one makes the substitution of Eq. (A2), dropping any terms linear
inwj or w;, and using (A7), both the sum of the cross terms and the last term in (A8) can be cast into the
form

Ala,a’;b,b")y, +Bla,a’; b,b")p, +Bla’,a;b",b)p,, . (A9)
Thus the use of (A6) gives
i[A(a,a’;b,b")+ Aa’, a;b, b')]y“ +3[B(a,a’;b,b")+B(a’, a;b",b)|(p’ +9)y, (A10)

which is indeed conserved.
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APPENDIX B

This appendix shows how the numerators to third order in g2 can be cast into the form of a “transverse”
trace. One begins with the relation

FV=§ Trly, (8 + TS+ M) (B1)
After the y;’s are eliminated, the numerator takes the form
sTrly, (A, + M)A, =M) - (Ay M)y, (By £ M) -+~ (B, =M )(B,+ M)], (B2)

where the A; and B; are 4-vectors and the sign of M alternates due to commuting the y;’s. One can define
A% by commuting the left-hand 7,, so that

YA+ M)Ay =M) Ay M)=2AD + (=W (A, =ML, + M)+ (Ay M)y, (B3)

and similarly for B(f’). Then one has

Tr[24972BY) = Trly, (A, + M)A, =M )~ (Ay M)y, (By £ M) - (B, =M )(B,+ M))
+T1’[Y+(A1'—M)(A2+M) b '(AN $M)7+(BN :FM) b '(ﬁz""M)(ﬁ[_M)] (B4)

which follows from the cyclic property of the trace and the fact that y,2=0. The second term on the right
differs from the first only in the sign of M. However, any odd power of M is multiplied by the trace of an
odd number of Dirac matrices, which vanishes. So the two terms in Eq. (B4) are equal. Thus one finds

s Trly, (A, + M) - (Ay £ M)y, (By £ M) -+ - (B, + M) =5 Tr[AD BY). (B5)
In first order in g2 one has

Yol B+ MNP =tb, =M)=2[ ($' =th, ~M) = (1= x,)($' =M)] + (' =M)($' =th, + M)y,
and similarly for the other y,. So one obtains

AP=x, ' —th, = x, M, BP=th,—x,$—x,M. (B6)

Note that the plus components of x, p’ —w, and w, — x, p vanish. Thus their dot product is just \71{ -Ql,

where wi=w, —x,q. In higher orders it is more convenient to leave the result in trace form. One can
define a “transverse trace” by

Tr(AB)=-Tr@-3b-7)=4a b (BT)
along with the usual rules for reducing larger traces. Then the one-pion numerator is
_% TI‘[(;{ - le)( i’l - le)] (BB)

where the over-all sign is from v y,y,=-7,.
In O(g*) one has

Yo(B' + M) B =t —-M ) B b, ~th,+ M)
=2[(x1f'—¢)1 _le)(#’ _7161—7'62+M)+(1 _xl _xz)(t"'*'M)(#'_ ¢1+M)]
- (ﬁ' —M)(l' _161 + M)(ﬁ’ _161 -zbz _M)7+ .
In order to cast the first term of A?) as a product of factors with vanishing plus component, one can write
A(f)z (xli" _¢1 _le)[(xl"'xz)f' ‘—161 -¢2+ M]
+(1=x, - xz)[(xlﬂl _wx -, M) + (' -M)(# “@61 +M)]. (B9)
After the minus integrations one has w,®=p% Then the term in square brackets becomes
(xlif'—lél —le)[" - (ﬁ, —M)lé, = xl“xlﬁ' —161 ‘x1M)(x1ﬁ' _161) - #2] .

So the two terms in Eq. (B9) can be combined. B? has the same form with x, §' =46, ~46, - x, f. Thus the
two-pion numerator after minus integrations can be written in the notation of Eq. (B8) as
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5
%Tr{[()z{—le)C—;l—xa;ﬁ ,7,2+M) - _1‘_’;11:.51“2][(1_;11‘2,7,1 . )712+M>()Kr1 -x, M) - __xxl-_Xa“z}}
(B10)
Just as in Eq. (B9) one can write AP as A®(x, + x, + x,)6 =6, =16, =5 —M ] plus (1 - x, - x, — x,) times the
term
[0 =t = 2550, =l b= L2202 (BB = M iy =iy =h0). (BT
When w2 =

w?=w,? the last term in this expression can, after some algebra, be written
1—-x,-x
{[xl[‘ wl_le](#, '2361 w2+M> ——1—'—2}12};61
1 J

X2 %

o=ty =100 2 (B - Y - -t
rn by e - 2 (R B ),

Then the three-pion numerator can be written:

1

—zTr({[(;{-le)(l—i‘lﬁ;’{*77’2'*M>_l_fcl-xz ](1 PR A e >

1 2

’ r\2 ”2 2 v
,_ Wy WLV _wE e (___a]"‘ x+n\], B = 3
+ b x,M)[x2<x2 x1> x, M X\ X X * xl(zéz M) (A Wie™ Vo)

(B12)
where it is understood in{i] ,~W, ,} that the order of Dirac matrices is reversed, as in Eq. (B10)

APPENDIX C

Here the constants a, and a,, associated with one and two-pion correlations in the interior, are calcu-
lated.

The one-pion correlation function in the interior region is easily found from Eq. (3.13) to be
¢,(0, W,, 0)=g% (0, Wy, 0)=—6(1 = x,)x, . (c1)
Thus Eq. (5.15) gives

f de [-6(1 = x,)x,]=-1 (c2)

which is just the result found in Eq. (3.17).
The two-pion correlation function in the interior is

02(6’ {’;u ;’;2’ 0) =g3 (6: ‘-;’11 ‘;2, 0)-g3 (6, ;71: 0)g$ (6: &2, 0)

=[=0(1 = x,)8(1 = x, = x,) £ 50, Wy, Wy, 0) + 6(1 = £,)6(1 = x,) £, (0, Wy, 0) £, (B, W, 0)]
[=0(1 = x,)6(1 = x; = x,) £ ,(0, Wy, Wy, 0)+ 6(1 = %,)0(1 = x,) £ 4D, W,, 0) £, (0, W,, 0)]
- 6(1 = x,)8(1 - x,) £, (0, w,, 0)7,(0, w,, 0)

==6(1-2x,)6(1-x, - xz)fz(ﬁ, ‘_;’u ;Vz, 0) - 6(1 - x,)6(1 - X = xz)fz(ﬁ’ ‘_;’2: ‘-‘;1’ 0)
+6(1 = x,)8(1 = x,) £, (0, w,, 0) £ ,(0, W,, 0). (C3)

The function f, given by Eq. (3 21) becomes relatively simple in this region. It appears in Eq. (3.28).
After changing variables to v, =w,/|w, | one finds
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=t 2dx, (2dx, (d*v,
272! T e 3.2

XX, Lo 1-x .\ x, - X, o~ \?
122 (1 = x,)0(1 = x; =, W,2\ Vo + —2 ;) — =201 = x,)0(1 = x, — x,)\ Vp + ——2— ),
% _(1-x) ! %y %, 1-x,

-5 X, o= 5(1-x)1?
[v2 +2—_2—1—x1w‘ v2+_2_2_x1(1—x1)

+2,%,0(1 = x,)0(1 — x,) |, (c4)

where ), is a unit transverse vector, and x, ,>0. Letting x,— (1 - x,)x, in the first term and x,~ (1 - x,)x,
in the second, this becomes

T ! 2dx 1 2dx. d?v
_ T aaxy aaxy a v,
%= 3] J; T fo T ("1"2)] 7,

—VZ[V +_2___Ll—x(1—x 121]2 -1 Vo —2 B :
2 2 1 2l T T ox(-x) ?

X 1 + +1
[ L. xll=x(1=x)])? - X L. x 2
1v2 +2%,W, v2+—2———3"———’-—x1 v,2+2 —2———1_'361(1_)62)101 v2+—[——zﬁxl T-x,(<x)

(C5)

Note that as ¥,>~ the first and third terms cancel and the second converges. As ¥, 0 the first term
converges and the second and third cancel. Thus if the terms are integrated individually from € to 1/¢’
where €, €’ <1, the divergent parts will cancel. Since the first term is only logarithmically divergent at
the upper limit, a shift will not affect it. The second and third terms are divergent at the origin, however,
and must be shifted together.

In the first term one can put

V=V - x,0, (c6)

to eliminate the angular dependence in the denominator. The cross term in the numerator then integrates
to zero, and the remaining transverse integral is

2
’ V2 +

1/€ x 1
o
€ (\72'2+x2 ———x—l)

1

.’_‘z(_l_‘_le -1+ l—_xz . (cn)
X, X%y

This has the same form as the second- and third-from-the-last terms in Eq. (3.29), where no shift was
performed.

In the last two terms of Eq. (C5) one can perform the shift:

X a
T-x(1-x) 1" (C8)

-

V,=V4—

Then the transverse integral becomes

1.

—52
_f d?v} xlzv2 1
<61_—x2__1;)>2 $2 4 %(1 = x,) 2 -
P lex(l-x) ! 2T a1 x(1=-x)P
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1 12
1€’ dv’? PEAL
==7 ' 2x 2 xl(l—x) 7~ 1
(o) |\ e
1-x,(1-x,) %01 = x,(1 = x,)
(C9)

The divergence at the origin has been shifted to 72 ={x,/[1 - x,(1 — x;)]}2. The integrand vanishes at that
point, so only the principal part contributes. Because of the absolute value, the integral takes the form
F(w) - F(a +€) —[F(a - €) - F(0)] where a is the singular point. Then (C9) becomes

- -1n(i,) -1n["1(1‘x‘)]-1+ 1-x | (C10)
€ X, X1 %2
When this is added to (C7) the €’ cancels. Inserting the result in place of the transverse integral in Eq.
(C5) one obtains:
a==(3-1+2)==3 (c11)
which agrees with the result found in Eq. (3.30).
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nois Report No. Th-71/11, 1971 (unpublished).

%§.-J. Chang and P. M. Fishbane, Phys. Rev. D 2, 1084
(1970).

BPuring the writing of this paper, a study of the rain-
bow diagrams by Y. Shimizu, Phys. Rev. D (to be pub-
lished), was received. By Mellin transform techniques
he obtains results consistent with Eq. (6.1) but includ-
ing additional terms which are here seen to be vanish-
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We review and extend earlier work dealing with the short-distance behavior of quantum elec-
trodynamics. We show that if the renormalized photon propagator is asymptotically finite,
then in the limit of zero fermion mass all of the single-fermion-loop 27z -point functions, re-
garded as functions of the coupling constant, must have a common infinite-order zero. In the
usual class of asymptotically finite solutions introduced by Gell-Mann and Low, the asymp-
totic coupling a, is fixed to be this infinite-order zero and the physical coupling a <o, is a
free parameter. We show that if the single-fermion-loop diagrams actually possess the re-
quired infinite-order zero, there is a unique, additional solution in which the physical cou-
pling « is fixed to be the infinite-order zero. We conjecture that this is the solution chosen
by nature. According to our conjecture, the fine-structure constant is determined by the
eigenvalue condition Fl'Ya) =0, where F!ig a function related to the single-fermion-loop
vacuum-polarization diagrams. The eigenvalue condition is independent of the number of
fundamental fermion species which are assumed to be present.

L. INTRODUCTION AND SUMMARY

The fundamental constant regulating all micro-
scopic electronic phenomena, from atomic physics
to quantum electrodynamics, is the fine-structure
constant . Experimentally, the current value!
@=1/(137.03602 +0.00021) is one of the best de-
termined numbers in physics. Theoretically, the
reason why nature selects this particular numer-
ical value has remained a mystery, and has pro-
voked much interesting speculation. The specula-
tions may be divided roughly into three general
types: (a) those in which @ is cosmologically de-
termined, either as a cosmological boundary con-
dition (which makes « undeterminable) or as a
function of time-varying cosmological parameters
(which makes a a function of time)?; (b) theories
in which a is a constant which is determined mic-
roscopically through the interplay of the electro-
magnetic interaction with interactions of other
types, either strong, weak, or gravitational.®
Since these interactions are currently even less
well understood than is the electromagnetic inter-
action, such theories seem at present to offer
little promise of an actual computation of «a; (c)

finally, theories in which « is microscopically
determined through properties of the electromag-
netic interaction alone, considered in isolation
from other interactions. It is this restricted
class of theories to which we will address our-
selves in the present paper.

The idea that @ may be determined electromag-
netically is an old one. In the early days of re-
normalization theory there were hopes that o
could be fixed by requiring the logarithmic diver-
gences appearing in higher orders of perturbation
theory to cancel or “compensate” the second-order
divergence in the photon wave-function renormali-
zation Z,,* so that the renormalized photon prop-
agator would be asymptotically finite. These hopes
received a setback, however, when Jost and Lut-
tinger® calculated the order-a? logarithmically
divergent contribution to Z; and found that it has
the same sign as the order-« divergence. Of
course, it was obvious that the question could not
be settled by calculations to any finite order of
perturbation theory. A systematic nonperturbative
attack on the problem was made by Gell-Mann and
Low?® in their classic 1954 paper on renormaliza-
tion-group methods. They showed that there is



